This article is intended to provide a simpler formula for the curvature in terms of easy-to-solve $r'$, $r''$, $| r' |$, and $|r'' |$.
Let curve $C$ be defined by $r(t)$ such that
$$r:[a,b] \subseteq \mathbb{R} \rightarrow \mathbb{R}^n $$
Then we can define Tagent, Normal, and Binormal Unit Vectors to be
$$\begin{align*} T &= \frac{{r}'}{|{r}'|} \\ \\
T' &= \left( \frac{r '}{|r'|} \right)' \\
&= \frac{|r'|r'' + | r '|' r'}{| r '|^2} \\
|T'| &= \frac{\left | | r '| r'' + | r' |' r' \right |}{| {r}'|^2}
\\ \\
N &= \frac{T'}{| T' |} \\
&= T' \frac{ 1 }{ |T'| } \\
&= \frac{ | {r}'| {r}'' + | r' |' r' }{ | {r}'|^2
} \frac{ | {r}' |^2 }{ \left | | {r}'| {r}'' + | {r}'|' {r}'
\right | } \\
&= \frac{| {r}'| {r}'' + | {r}'|' {r}'}{\left | | {r}'| {r}''
+ | {r}'|' {r}' \right |} \\ \\
B &= T\times N \\
&= \frac{ {r}'}{| {r}'|} \times \frac{| {r}'|r'' + | {r}'|'r'}{\left
| | {r}'| r'' + | {r}'|' r' \right |} \\
&= \frac{1}{|r'|} \frac{ 1 }{ \left | | {r}'| r'' + | {r}'|' r'
\right | } \left( r' \times (|r'| r'' - |r'|' r') \right), \text{ Factor our
Scalars.} \\
&= \frac{1}{|r'|} \frac{ 1 }{ \left | | {r}'| r'' + | {r}'|' r'
\right | } \left( |r'| \, r' \times r'' - |r''| \, r' \times r' \right),
\text{Distribute out cross product. }\\
&= \frac{1}{|r'|} \frac{ 1 }{ \left | | {r}'| r'' + |
{r}'|' r' \right | } \left( |r'| \, r' \times r'' \right) \\
&= \frac{ r' \times r'' }{ \left | | {r}'| r'' + | {r}'|' r' \right
| }
\end{align*}$$
Notice that $$|T| = 1 \\ \therefore |T|^2 = T\cdot T = 1$$
$$\begin{align*}
\because T \cdot T &= 1 \\
\therefore (T\cdot T)' &= 0\\
T'\cdot T + T\cdot T' &=
0\\
2T\cdot T' &= 0\\
T\cdot \frac{T'}{| T' |} &= 0\\
\therefore T\cdot N &= 0
\end{align*}$$ This shows that $T$ and $N$ are orthogonal.
$$\therefore |B| = \sin(\theta_{T,N})|T||N| = |T||N|= 1$$
$$\begin{align*}
\because |B| &= \frac{ \left | r' \times r'' \right | }{ \left
| |r'| r'' - |r'|' r' \right | } \\ \\
\therefore \left | |r'| r'' - |r'|' r' \right | &= \left | r'
\times r'' \right | \\
&= \sin(\theta_{r', r''})|r'||r''|
\end{align*}$$
By definition of cross product, where $\theta_{r', r''}$ is angle between the vectors $r'$ and $r''$.
$$\begin{align*}
\therefore \sin(\theta_{r', r''})|r''| &= \left | r'' - |r'|'
\frac{r'}{|r'|} \right | \\
&= \left | r'' - |r'|' T
\right | \\
\end{align*}$$
Arclength is defined as $$s(t) = \int_{a}^t | {r}'| dt \\ \therefore s' = | {r}' |$$
Curvature is originally defined as $$\begin{align*}
\kappa &=
\left | \frac{dT}{ds} \right | \\
&= \left | \frac{dT}{dt} \frac{dt}{ds} \right | \\
&= \left
| \frac{T'}{s'} \right | \\
\therefore \kappa &= \frac{ \left | T'
\right | }{ \left | {r}' \right | }
\end{align*}$$
We can define the second derivatives of the curve using the terms above.
$$\begin{align*}
r'' &= (r')' \\
&= \left( |r'|T \right)' \\
&= |r'|' T + |r'| T' \\
&= |r'|' T + |r'| |T'| \frac{T'}{|T'|} \\
&= |r'|' T + |r'| |T'| N \\
&= |r'|' T + |r'| ^2\frac{|T'|}{|r'|} N \\
r'' &= |r'|'
T + |r'| ^2\kappa N \\ \\
\end{align*}$$
$$\therefore |r'| ^2\kappa N = r'' - |r'|' T $$
Remember that $$\begin{align*}
\sin(\theta_{r', r''}) |r''| &= \left
| r'' - |r'|' T \right | \\
&= \left | |r'|^2 \kappa N \right | \\
&= |r'|^2 \kappa
\end{align*}$$
So we can redefine Curvature as
$$\kappa = \frac{ \sin(\theta_{r' , r''} ) |r''| }{ |r'|^2 }$$
Where $\theta_{r',r''} \in [0,\pi)$ is the angle between the two vectors $r'$ and $r''$.
Notice that because $\theta_{r',r''} \in [0,\pi)$,
$$\sin(\theta_{r',r''}) \geq
0$$ We also know from properites of dot product and trig identity that $$\begin{align*}
\because \cos(\theta_{r',r''}) &= \frac{r'\cdot r''}{|r'||r''|} \\
\because \sin^2(\theta) + \cos^2(\theta) &= 1 \\ \\
\therefore \sin^2(\theta_{r',r''}) &= 1 - \cos^2(\theta_{r',r''}) \\
&= 1 - \left( \frac{ r'\cdot r'' }{ |r'||r''| } \right)^2
\end{align*}$$
Notice that because $\sin(\theta_{r',r''}) \geq 0$, we can solve for $\sin(\theta_{r',r''}) $ by rooting both sides. $$\sin(\theta_{r',r''}) = \sqrt{1 - \left( \frac{ r'\cdot r'' }{ |r'||r''| } \right)^2}$$
Finally, we find that
$$\begin{align*}
\kappa &= \frac{ |r''| }{ |r'|^2 } \sqrt{1 - \left( \frac{ r'\cdot r'' }{
|r'||r''| } \right)^2} \\ \\
&= \frac{1}{|r'|^3} \sqrt{ (|r'||r''|)^2 - (r' \cdot r'')^2 }
\end{align*}$$ QED
Comments
Post a Comment