This article is intended to provide a simpler formula for the curvature in terms of easy-to-solve r′, r″, |r′|, and |r″|.
Let curve C be defined by r(t) such that
r:[a,b]⊆R→Rn
Then we can define Tagent, Normal, and Binormal Unit Vectors to be T=r′|r′|T′=(r′|r′|)′=|r′|r″+|r′|′r′|r′|2|T′|=||r′|r″+|r′|′r′||r′|2N=T′|T′|=T′1|T′|=|r′|r″+|r′|′r′|r′|2|r′|2||r′|r″+|r′|′r′|=|r′|r″+|r′|′r′||r′|r″+|r′|′r′|B=T×N=r′|r′|×|r′|r″+|r′|′r′||r′|r″+|r′|′r′|=1|r′|1||r′|r″+|r′|′r′|(r′×(|r′|r″−|r′|′r′)), Factor our Scalars.=1|r′|1||r′|r″+|r′|′r′|(|r′|r′×r″−|r″|r′×r′),Distribute out cross product. =1|r′|1||r′|r″+|r′|′r′|(|r′|r′×r″)=r′×r″||r′|r″+|r′|′r′|
Notice that |T|=1∴|T|2=T⋅T=1
∵T⋅T=1∴(T⋅T)′=0T′⋅T+T⋅T′=02T⋅T′=0T⋅T′|T′|=0∴T⋅N=0 This shows that T and N are orthogonal.
∴|B|=sin(θT,N)|T||N|=|T||N|=1
∵|B|=|r′×r″|||r′|r″−|r′|′r′|∴||r′|r″−|r′|′r′|=|r′×r″|=sin(θr′,r″)|r′||r″|
By definition of cross product, where θr′,r″ is angle between the vectors r′ and r″.
∴sin(θr′,r″)|r″|=|r″−|r′|′r′|r′||=|r″−|r′|′T|
Arclength is defined as s(t)=∫ta|r′|dt∴s′=|r′|
Curvature is originally defined as κ=|dTds|=|dTdtdtds|=|T′s′|∴κ=|T′||r′|
We can define the second derivatives of the curve using the terms above.
r″=(r′)′=(|r′|T)′=|r′|′T+|r′|T′=|r′|′T+|r′||T′|T′|T′|=|r′|′T+|r′||T′|N=|r′|′T+|r′|2|T′||r′|Nr″=|r′|′T+|r′|2κN
∴|r′|2κN=r″−|r′|′T
Remember that sin(θr′,r″)|r″|=|r″−|r′|′T|=||r′|2κN|=|r′|2κ
So we can redefine Curvature as
κ=sin(θr′,r″)|r″||r′|2
Where θr′,r″∈[0,π) is the angle between the two vectors r′ and r″.
Notice that because θr′,r″∈[0,π),
sin(θr′,r″)≥0 We also know from properites of dot product and trig identity that ∵cos(θr′,r″)=r′⋅r″|r′||r″|∵sin2(θ)+cos2(θ)=1∴sin2(θr′,r″)=1−cos2(θr′,r″)=1−(r′⋅r″|r′||r″|)2
Notice that because sin(θr′,r″)≥0, we can solve for sin(θr′,r″) by rooting both sides. sin(θr′,r″)=√1−(r′⋅r″|r′||r″|)2
Finally, we find that
κ=|r″||r′|2√1−(r′⋅r″|r′||r″|)2=1|r′|3√(|r′||r″|)2−(r′⋅r″)2 QED
Comments
Post a Comment